TEAM 2 FURPS++
FINAL SUBMISSION

Austin Cory Bart
Etornam Banini
Michael Chinn
Andrea Macartney
William Greenhalgh

CISC 475 Fall Semester
Professor Andrew Roosen

December 5, 2011

TABLE OF CONTENTS

BT 10 0 T D 1o 100 1 4) L o 3
USE CASE MOTELS eoveereeureeenseeemsesessee s ssseesssesessessssesessesesses s s s s ss £ SRR R R R R AR 4
ASSIStANT t0 DAta STOTE v ————— 4
USET £0 DAL STOTE coourreereeuseeuseeessseessessseessseeessesessesessss s s ss e ss e s s ss s8R xRS R ER RS 5
FOITMNAlIZEA USE CASES..ouuieruurermsrermseessssesessssessssesssssesesssessssssesssssessssssssssssesssasssssssssssssesssssesesssssessssesesssesssssessssssesssssessssssasssas 6
(1) LIOGIN retueeereeeseesseessseesssessssessseeessseessesessse s sss s es s R8RSR £ E RS R AR E e et E e 6
(2) CRANEZE SEIMESTET'S weouuuererussreesssresmssesssssesssesssssesesssessssssesesssessssssasssssessssssssssssasssssesesssesessssssesssesesssesessssesssssasssssssssssasssas 6
(3) A SEIMESLET'S ..cuureuueerseessreessseessseessssesssessssesssesessssessesessessssss s es e es s e s ERs bR eSS E SRR bbbt 7
(4) REIMOVE SEIMIESTEIS cuiruirsresrsssssssssssssssssss st sssssssssssssssssssssssssssssssessssssssssssssss s s s s sssss s s sssassssssssns 7
(5) A USEIS weeureeueeusreessseesssessssessssesssssessssesssessssesssessssessssesessssssses s sssasessesessessssessssas e sasassssessssessssassasassasas asassssassssassssens 8
(6) REIMOVE USEIS.uuuiuuiessassssassssssssssssss s sssassssasssssssssss s s sssasssssssssns 8
(7)) ENIEET DAL coveueeeueeuureesseeessseesseessseessseessssesssessssessseeessessssesessesssses s sssesessesessesessesssses e bssassssesessessssessssas et asassssasssssssssens 9
(8) Audit Unavailable TiIMES s sssssssssssssssssssssssss s sssssssssssssanens 9
(9) RUN SCREAUIET .cceeeeeeeeeeeeeteese e es s esesesses e s s R bbb 10
(10) PUDIISH SCHEAULE .couvveeeeeereereeseeeseeessseseessessssssessssssessssssssssesessssss s s sss e sesss s s s sss s sssssssssssasssasens 11
(11) REVIEW RESPOMNSES....oieureeureemsresseeesssessssesssessssessssesesses s s s s s ess et e s bbb e bbb 11
(12) FINAHZE SCREAULEeeereeeeeeereeseeereeeesssesssessssssssssssssssses s esssssssssse s s s s es s sss s ssssassnasens 12
(13) REGISTET ON W DO ... ieereeesreuseesseessseeesseeessesessesesses s s s sssse s ess s e s e bbb bt 12
(14) LOZIN £0 WEDTOI T c...revusreeereeersreeseesssesesssseessssesssssessssssssssssesssssssssssssssssesesssssessssssssssesessssssssssesssssesssssasssssasssasens 13
(15) SUbMit UNAVAIIADIE TIMES ..couoreeeeeeeieeeeeseeeeseeese e sesessess e b s ss bbb 13
(16) Respond to PubliShed SCREAULE...... e sessssssssesesssssssssesssssessssssssssssssssasens 14
(17) View FINaliZed SChEAUIE ...ttt ssssessssessssss s s s s s ss st s sssseeas 15
SUPPLEMENTATY REGUITEIMIEIIES c.oovreeusrersseeesssrerssseessseeesssesesssssessssesssssesssssessssssesssssesessssssssssessssssessssesssssesessssssssssesssssesees 16
GLOSSAITY weeureeuseeesseeeuseesusessssesessesessesesses s e e R bR R AR A8 E 8RR RS £ 8RR SRR LR AL ER SRR R AR 18
1370} 44 b= 04 1017 (oY =) TR 20
SYSTEIM ATCRITECTUTE «.coveeeeeeuseeenseeeseeesseeesseeessesessesessesssses s sssess s e s R SRR bR 21
ClASS DIAGTAINIS ..ouureeeruserersssessssesessssesssseesssesesssesessssesssssesessseasssssasssssesessssasssssesssssssessssesesssssesssssessssesesssesessssesesssesssssssssssasssasens 22
1Y oY =Y U0 OO SO 22
VIEW .ot ceeeeenes e s e s see s eess s es s s e s s s RsEs e ER R £ R RS R R E AR SRR R AR R SRR AR AR AR R R R e 23
(070 01 /o) | 1= o OO OSSOSO 24

SEQUENCE DIAGTAINS ...ceuceuerseeseessesssessseesseessesssassseesssesssesssesssesssesssesssessss s seess s aessess s s s R s e bR R RS RseE AR E b 26
0 .o P 26
B ST ST () ¢ P 27
PICK SCREAULE ..ot sssssssss s s s st ssss s s st 28
LT =1 o L) 3o TN 29
DL 0 (0] 74 00 =) o LN (o] o UL =T o DD o TP 30
LDT23 0] (0} 7400 1= L D = = o O TSP 30
DEPLOYIMENT LOZISTICS .ourrerusreesseeesseeesssmeesssseessssesssmsesessssssssssesssssesesssssssssesssssesesssesssssssssssesssssessssssesssasessssssesssssssssesssass 31
B L2 oL (T =) RN 32
Problems and LESSONS LEAITIEMccreereereeeseersseesssessssssessssssssssessssssssssssessssssessssssssssesssssessssssssssssesssssessssssasssasees 33
PIIMATY AULROTS oottt sesssse e e s s s bbb RS RER R8RSR R 34

Page | 2

VISION DOCUMENT

Currently at the University of Delaware there is a strong need for an automated way to
assign Teaching Assistants (TA’s) and Lab Assistants (LA’s) to class sections. The most
cumbersome part of this task is to apply numerous constraints to these assignments, where the
constraints must be satisfied in order for a viable schedule to be produced. The current scheduling
process is done by hand, and because of the overwhelming data involved, this process is both
extremely time-consuming and also prone to human error. Having an efficient system which could
aid in this process would give the domain expert- Dr. Daniel Chester- more time to spend on other
tasks. Further, such a system could have applications in other departments and schools that have
similar TA scheduling needs.

Our solution is a software suite, consisting of two different pieces, our Assistant Scheduling
System and Webform. The Assistant Scheduling System is a Java-based application which aids in
the scheduling of TA’s and LA’s. The system will produce schedules by performing constraint
satisfaction on a wide variety of constraints, such as balancing the time between engagements,
ensuring the TA has proper background knowledge of the course subject, and maintaining a
manageable class size. The system will be extensible so that future scheduling constraints can be
added without too much difficulty. There is a Graphical User Interface so that the user can easily
enter in the required information and view the results of the proposed solution.

The second part of our software suite is a PHP-based Webform with which assistants will
interact. The Webform was created because assistants need a way to enter in their information
from anywhere, not just on one local computer like the Scheduling System can. It allows for
assistants to add and edit their data, such as unavailable times, and then review and respond with
either a rejection or acceptance of a particular schedule they were assigned to.

The success of the Assistant Scheduler System will be demonstrated by the production of a
valid schedule that abides by the provided constraints. The system needs to give the resultin a
timely manner. It should report a viable schedule in minutes, not hours. It needs to consume
significantly less time and effort than the old by-hand method when being used in subsequent
semesters to justify the increased set-up and training time associated with using a new system.

Page | 3

USE CASE MODELS

ASSISTANT TO DATA STORE

Register on
Webform

Login to
Webfarm

Submit Unavailable
Times

Assistant ==[ata Store==

Respondto
Published Schedule

View Finalized
Schedule

Page | 4

USER TO DATA STORE

Change Semesters

Add Semesters

Remaove Semesters

Add Users

Remoaove Users

Enter Data

Audit Unavailable
Times

Lser ==Data Store==

Run Scheduler

Publish Schedule

Review Responses

Finalize Schedule

Page | 5

FORMALIZED USE CASES

(1) LOGIN
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to log in

Precondition:
e None

Post-condition:
e The user has successfully logged into the system

Normal Flow:
1. The user enters their username and password
2. The username and password are verified on the server
3. The user is logged into the system

Alternate Flow:
2b: The username is not found or the password is invalid
2b1: The user is not logged into the system

(2) CHANGE SEMESTERS
Actors:

1. User

2. Data Store

Trigger:

e The user signals to the system the desire to change semesters

Precondition:
e The user is logged into the system

Post-condition:
e The current semester has changed

Normal Flow:
1. The system presents all available semesters
2. The user selects a semester

Page | 6

3. The system loads the selected semester

Alternate Flows:
2a: The user wants to duplicate an old semester
2al: The user selects a semester
2a2: The user enters a name for the duplicate semester
2a3: The system adds the the new semester based on the old one
2a4: The user selects a semester
2a5: The system loads the selected semester

(3) ADD SEMESTERS
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to add semesters

Precondition:
e The user is logged into the system

Post-condition:
e The current semesters in the system have been changed

Normal Flow:
1. The system presents all available semesters
2. The user enters a name for the semester
3. The system adds the new semester

(4) REMOVE SEMESTERS
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to remove semesters

Precondition:
e The user is logged into the system

Post-condition:

Page | 7

e The current semesters in the system have been changed

Normal Flow:
1. The system presents all available semesters
2. The user selects a semester
3. The system removes the semester

(5) ADD USERS
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to add users

Precondition:
e The useris logged into the system

Post-condition:
e The current users in the system have been changed

Normal Flow:

1. The system presents all existing users besides the logged-in user

2. The user enters information about a new user
3. The system adds that user from the data store

(6) REMOVE USERS
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to remove users

Precondition:
e The user is logged into the system

Post-condition:
e The current users in the system have been changed

Normal Flow:

Page | 8

1. The system presents all existing users besides the logged-in user
2. The user selects a user to remove
3. The system removes that user from the data store

(7) ENTER DATA
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to enter data

Preconditions:
1. The user is logged into the system
2. The user has chosen a semester

Post-condition:
¢ The model in the data store has changed

Normal Flow:
1. The system presents the current semester’s model data (assistants, sections, constraints,
instructors, schedules, and skill sets) from the data store
2. The user manipulates the data present
3. The system stores the changes to the data store

Alternate Flow:
2a: The user enters incorrect data
2al: The system rejects the data

(8) AUDIT UNAVAILABLE TIMES
Actors:

1. User

2. Data Store

3. Assistant

Trigger:
e The user signals to the system the desire to audit assistant’s unavailable times

Preconditions:
1. The user is logged into the system

2. The user has chosen a semester

Page | 9

3. Assistants have submitted unavailable times associated with the semester to the data store

Post-condition:
e There are no more unavailable times associated with the semester in the data store

Normal Flow:

1. The system presents a list of assistants who have unavailable times
The user chooses an assistant
The user reviews all the unavailable times associated that assistant
All acceptable unavailable times are marked as such
All marked unavailable times are added to the data in the data store
Unmarked times are removed from the system

o Uk Wi

(9) RUN SCHEDULER
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to obtain a schedule

Preconditions:
1. The user is logged into the system
2. The user has chosen a semester
3. The user has entered any data they want to base the schedule on

Post-condition:
e A new schedule is added to the data store

Normal Flow:
1. The system performs constraint satisfaction to find a valid schedule
2. The user reviews the generated schedule and makes individual modifications as they desire
3. The schedule is marked as “unpublished” and added to the data store

Alternate Flow:
2a: The system cannot find a valid schedule
2al: The system notifies the user that it is unable to find a valid schedule
2a2: The system suggests to the user what data and constraints are preventing a valid
schedule

Page | 10

(10) PUBLISH SCHEDULE
Actors:

1. User

2. Data Store

3. Assistant

Trigger:
e The user signals to the system the desire to publish a schedule

Preconditions:
1. The user is logged into the system
2. The user has chosen a semester
3. The user has run the scheduler to create a schedule

Post-condition:
e Aschedule is marked as published on the data store

Normal Flow:
1. The system presents the user with a list of schedules
2. The user chooses a schedule to publish
3. The schedule is marked as published on the data store
4. Any assistants who are affected by the published schedule are notified via email

(11) REVIEW RESPONSES
Actors:

1. User

2. Data Store

3. Assistant

Trigger:
e The user signals to the system the desire to review assistant responses

Preconditions:
1. The user is logged into the system
2. The user has chosen a semester
3. The user has published a schedule
4. Assistants have submitted responses to the published schedule

Post-conditions:

1. Assistant responses are removed from the data store
2. Assignments in the schedule are marked as accepted, rejected, or overridden

Page | 11

Normal Flow:
1. The system presents a list of assistant responses to the user
2. Ifthere are no rejections, the reviews are removed and the schedule is marked as fully
accepted

Alternate Flows:
2a: Arejection is present for an assignment and the user would like to modify the schedule
2al: The user modifies the schedule and has it republished
2a2: Any reviews that included rejections are purged
2b: A rejection is present for an assignment and the user would like to override this rejection
2b1: The user overrides the rejection
2b2: If all rejections are accepted or overridden, the reviews are removed and the schedule is
marked as fully accepted

(12) FINALIZE SCHEDULE
Actors:

1. User

2. Data Store

Trigger:
e The user signals to the system the desire to obtain a schedule

Preconditions:
1. The user is logged into the system
2. The user has chosen a semester
3. The user has published a schedule
4. The schedule has been marked as fully accepted

Post-condition:
e The schedule is marked as finalized on the data store

Normal Flow:
1. The system presents a fully accepted schedule to the user
2. The user approves it
3. The system marks the schedule as finalized on the data store
4. All assistants are notified of the finalized schedule via email

(13) REGISTER ON WEBFORM
Actors:
1. Assistant

Page | 12

2. Data Store

Trigger:
e The assistant signals the data store that they wish to register

Precondition:
e None

Post-condition:
e The assistant is registered for the webform

Normal Flow:
1. The webform requests the udel username and a non-udel password from the assistant
The assistant provides their udel username and a non-udel password
The assistant is sent an email asking them to verify their account
The user verifies their account
The webform registers the assistant in the data store

v W

(14) LOGIN TO WEBFORM
Actors:

1. Assistant

2. Data Store

Trigger:
e An assistant signals the webform that they desire to login to the system

Precondition:
e The assistant is registered in the system

Post-condition:
e The assistant is logged into the webform

Normal Flow:
1. The assistant provides their login credentials to the webform
2. The webform accepts the login credentials
3. The assistant is logged into the webform

(15) SUBMIT UNAVAILABLE TIMES
Actors:

1. Assistant

2. Data Store

Page | 13

Trigger:
e An assistant signals the webform that they desire to submit unavailable times

Precondition:
e The assistant is logged into the system

Post-condition:
¢ Unavailable times are added to the current semester for the assistant on the data store

Normal Flow:
1. The webform provides a blank list of unavailable times
2. The assistant fills out the list with times they are unavailable and the reason they are
unavailable at that time
3. The assistant submits the information and the webform queues this information in the data
store

(16) RESPOND TO PUBLISHED SCHEDULE
Actors:

1. Assistant

2. Data Store

3. User

Trigger:
e An assistant signals the webform that they desire to review their assignments

Preconditions:
1. The assistant is logged into the system
2. Auser has published a schedule

Post-condition:
e Responses are added to the current semester for the assistant on the data store

Normal Flow:
1. The webform presents a list of assignments to the assistant
2. The assistant accepts the assignment
3. The acceptance is queued on the data store

Alternate Flow:
2a: The assistant rejects the assignment
2al: The assistant provides a reason for this rejection on the webform
2a2: The rejection is queued on the data store

Page | 14

(17) VIEW FINALIZED SCHEDULE
Actors:

1. Assistant

2. Data Store

3. User

Trigger:
e An assistant signals the webform that they desire to see their finalized assignments

Precondition:
e The assistant is logged into the webform

Post-conditions:
e None

Normal Flow:
1. The webform presents the assistant with a list of their assignments

Page | 15

SUPPLEMENTARY REQUIREMENTS

Operational Concerns:

1. The server system needs to be running at all times that a client system could be running.
The reverse is not necessary.
2. All assistants must be able to access and modify the webform.

Domain Rules of the Constraint Satisfaction System:

1. The input of the system is the following
a. Letassistants be the set of assistants
b. Let sections be the set of sections
c. Letpositions be the set of positions
d. Let instructors be the set of instructors
e. Letskills be the set of all possible skills
f. Let times be the set of all possible times
2. The output of the system is the set of binary predicates assigned (x,y) such that ais an
assistant assigned to a position p.
3. Constraints should be addable via source code modification. The following initial, minimal
constraints have been identified for the system by Dr. Chester:
a. All sections must be filled.
for all p in positions:
exists an a in assistants:
assigned (p, a)
b. Some assignments are specifically forbidden for a section:
for all s in 1.SECTIONS TAUGHT:
for all p in s.0OPEN POSITIONS:
for all a in assistants:
if a in s.FORBIDDEN ASSISTANTS:
—assigned (p, a)

c. Some assignments are specifically required for a position by a section:
for all s in i.SECTIONS_TAUGHT:
for all p in s.0OPEN POSITIONS:
for all a in assistants:
if a in S.REQUIRED ASSISTANTS:
assigned (p, a)
d. Some professors specifically forbid a student from working with them:
for all i in instructors:
for all s in 1.SECTIONS TAUGHT:
for all p in s.0PEN POSITIONS:
for all a in assistants:
if a in i.FORBIDDENLASSISTANTS:
—assigned (p, a)
e. An Assistant cannot be assigned a position that would exceed their student limit
for all a in assistants:

Page | 16

exists p in positions:
a.STUDENT LIMIT < (sum({b|for all b in positions,
assigned(a,b)}) + p.STUDENT LIMIT) A -(assigned(p,a)
f. An Assistant cannot be assigned to a position that meets during one of their
unavailable times:
for all p in positions:
for all a in assistants:
if s.TIME E a.UNAVAILABLE TIMES:
—assigned(p, a)
g. Two sections cannot be assigned to the same assistant if their times intersect
for all pl in positions:
for all p2 in positions:

if pl ?é P2 A intersects (pl.TIME, p2.TIME):
assigned (pl, x) % assigned (p2, x)
h. Require Skills: Forbid an assignment if the assistant doesn’t have all the skills
required for it
for all p in positions:
for all a in assistants:
if p.SKILLS € a.SKILLS:
—assigned (p, a)

Packaging

The client system should be installable with no hassle. The server system’s requirements
are less stringent, but should still be clear and direct.

Security

1.

U1

Any private assistant data should be stored encrypted in the Data Store, including
o Skills
o Unavailable Times

Any private instructor data should be stored encrypted in the Data Store including
o Forbidden Assistants

Any private section data should be stored encrypted in the Data Store including
o Required Assistants
o Forbidden Assistants

Users must login with a username and password

Assistants must login with a username and password

All passwords must be stored encrypted.

Page | 17

GLOSSARY
Assignment: a single matching/relation of an Assistant to an Position.

Assistant: Student who will be assisting the professor in a Section of a Course. This could either be
a Teaching Assistant (TA) or a Lab Assistant (LA). Their information includes their Skill Set, Time
Blocks in which they are not available, their student ID number, and username (from their UD email
address).

Assistant Scheduling System (aka Scheduler): The system that uses Assistant, Section, and
Instructor data to generate a satisfactory schedule.

Constraint: Predicates/conditions which are applied to the relations (Assignments) of Assistants to
Sections before the output of a Schedule can be produced.

Course: a class at UD, e.g. “CISC-106”, which may consist of multiple Sections.
Data Store: The location that sessions, login information, and webform data is stored in.

Finalized Schedule: a schedule that has been sent to the webform for Assistants to view. Assistants
are notified and only allowed to look at the schedule.

Hard Constraint: A constraint which is absolute, and cannot be compromised.

Instructor: teaches a particular Course. Can forbid an Assistant to assist any of their Courses. Can
also request an Assistant to fill a specific Position.

Position: A position that needs to be filled by an Assistant for a section, e.g. “LA Position #1 of CISC-
106-030L” and “LA Position #2 of CISC-106-030L”. A section may have multiple Positions
associated with it.

Published Schedule: a schedule that has been sent to the webform for Assistants to review.
Assistants are notified if they are affected by the new Schedule, and must submit an acceptance or
rejection of their assignments via the webform.

Response: An acceptance or rejection by an Assistant of a published schedule. These responses are
queued in the data store, until they are reviewed by a User. If an Assistant rejects an assignment,
they must provide a reason for doing so. If all responses report acceptable, then the schedule may
be finalized.

Schedule: A set of assignments between Assistants and Positions. A schedule must be satisfactory,

that is, it conforms to all Constraints specified. After a schedule has been produced, it can be
published and ultimately finalized.

Page | 18

Section: A particular meeting of a course, e.g. “CISC-106-030L” or “CISC-106-031L” Information
includes the location (building), enrollment limit, current enrollment, Time Block, Course in which
the Section is associated with, a set of skills required to assist it, and one or more Positions.

Semester: A saved snapshot of the model at a particular time that correlates to a semester that a
schedule is needed for.

Session: a snapshot of the model, saved to and loaded from the Data Store between runs of the
program.

SKill Set: The skills which an Assistant has, or that a section requires. These are represented as a

set of “tags”, keywords that include items like “software engineering”, “english proficiency”, or
“graduate level”.

Soft Constraint: A constraint which is a preference. This would be taken into consideration when
calculating an optimal schedule, but is not an absolute requirement. Our system does not
implement soft constraints but is built such that they may be added in the future.

Time Blocks: A range of time (having a start and end time) associated with a description.
Assistants have a set of Time Blocks that they are unavailable for. Sections have a Time Block that
they meet during.

User: One who interacts and runs our Assistant Scheduling System and has access to all functions of
the program. They can add, remove, or modify all data in the system including but not limited to
Assistants, Courses, Sections, Instructors, and Constraints. Based on their input they will run the
Assistant Scheduling System to produce a Schedule. They can access the System a GUI.

Webform: Adjunct system to the Scheduler, accessed via a web browser by an Assistant. It allows
for input of Assistant Time Blocks without entry via the Scheduler. Assistants can also use it to
review and accept Schedules, and see the finalized schedule for the semester. Assistant Data and
schedule accepts/rejects are queued in the system.

Page | 19

DOMAIN MODEL

Skill
Time Blocks
Assistant i A Assignment e Position
"~ provides
iprnuides ", ‘
i)
i Response Schedule
i Section
Vi
affects affects
Assistant Data |------------------- 34 Constraint gZ-------------------1 Section Data
iaﬁems

Instructor Data

i
renters

A A A

it el User |[---------—--—-------m-moooo - :

Page | 20

SYSTEM ARCHITECTURE

Presentation

Gul

Webform F-[-----

Application

LoginHandler

Senver based system j

Model

Schedule

e
Assistant Instructor
User
Section Constraint

.:E 1

Scheduler

Page | 21

CLASS DIAGRAMS

MODEL

TimeBlock

private int starfTime
private int startDay

—private int endTime
private int endDay
private String description
Instructor idis the eecis
- Jusername ofthe
Str!ng _name professor
Stfring id
Constraint List=Assistant= forbiddenAssistants
- Section
Defined in _
Constraint String id
* boolean active
- Model Str|ng location
Assistant int enrolled

L?st{.&ssi_stant} as_sista nts int enrollediax
L!st{Sec’[mn} sections Time time
L!st<8chedulle> su:hedulgs Set=Tag- skilsMeeded
List=Constraint= constraints
List=Instructor= instructors

String username
String name
boolean active

—
Set=Skill= skills
Set=TimeBlock= unavailableTimes

List=Position= tas
List=Position= las

int studentsLimit String semester Response boolean alssistantsF'resent
Instructor instructor
; intvalue List=Assistant= requiredAssistants
g String comment Hashmap=Pasition,
) List=Assistant== forbiddenAssitants

studentsLimit
refers to how
many students
an Assistant can
be responsible
for across all
sections

Schedule I

Map=Puosition, Assistant= assignments Pasition
Map=Puosition, Response> responses —
boolean published
boolean finalized

private Section section
private boolean isTA
private int order

Skill
String name

Page | 22

VIEw

View
SettingsWindow [— Controller controller ResourcePanel
JFrame frame private Object resource
MainWindow mainWindow protected Controller controller
SemesterWindow -.r-ﬂair_ﬂ'denu mainM_enu_ protected ModelHandler modelHandler
LoginWindow loginWindow protected Model model
Controller controller LoginMenu loginMenu private String leaflcon
ModelHandler modelHandler ModelHandler modelHandler
SemesterHandler semesterHandler GraphicsEnvironment env iy
WebformHandler webformHandler —
JFrame owner
ArrayList=3tring= semesterList
JList semesterListBox SectionPanel
SemesterWindow self
Section section
Section backup
Loginklenu LoginWindow
private JMenu fileMenu L =) qninHandler login —
private JMenultermn exit MainWindow AssistantPanel
—— SettingsDialog settingsDialog b Assistant assistant
JTabbedPane tabs Assistant backup
AuditDialog
Controller controller
WebformHandler webformHandler ConstraintPanel
ModelHandler modelHandler i ;
i MainMenu L!st constraints
JFrame aowner List backup
Model model private JFrame genericWindow
AuditDialog self if class private SettingsWindow settings\Window
ArrayList=Pair<String, TimeBlock== times private Controller controller
ArrayList=AuditCheckBox= audits private LoginHandler loginHandler SchedulePanel
private View view
private JFrame frame Schedule schedule
Schedule backup
SemesterDialog
SessionHandler sessionHandler
InstructorPanel
Instructor instructor
AuditReponseDialog Instructor backup
‘WebformHandler webform

UsersDialog
LoginHandler lagin

Page | 23

CONTROLLER

Scheduler

Schedule pick(Model model)

User

String name
String passwaord

’{H

Controller

Lseruser
Model model
LoginHandler loginHandler

LoginHandler

DataStoreConnection

——————— A Connection connection

checkUser(User user)
addUser(User user)

removellser(User user)

SessionHandler

setSemester(5tring semester)
savesSemester(Model model)
Maodel loadSemester()
save3ession(Maodel maodel)
Model loadsession()

SessionHandler sessionHandler
WebformHandler webformHandler

Yiew view

i startSemester(String semester)

WebformHandler

publishSchedule(Schedule schedule)

main()
ModelHandler

Model model

List=ModelListeners= assistantListeners
List=ModelListeners= sectionListeners
List=ModelListeners= scheduleListeners
List=ModelListeners= skillsListeners
List=ModelListeners= positionsListeners

addAssistantListeneriModellistener)
addSectionListener(Modellistener)
add3chedulelisteneriModellistener)
add3killsListener{Modellistener)
addPositionsListeneriModellistener)
notifyAssistantListeners()
notifySectionListeners()
notifySchedulelisteners()
notifySkillsListeners()
notifyPositionsListeners()
loadModel{Model model)
addResource(Object o)
remaoveResource(Object o)
modifyResource(Object o, Object value)

finalizeSchedule(Schedule schedule)
List=TimeBlock= getlnavailableTimes()
notifyAssistants(Stringll emails)
List=Response= gethewResponses()
boolean allAccepted()

boolean allTimeBlocked()

removeldnavailableTimes(Schedule schedule)

Response

TimeBlock

boolean accepts
String comment

Cefined in
Model overview

Auxilary f-------1 to find a good

Sometimes it's hard

place for everything.

Page | 24

CONSTRAINT

Constraint

String name

boolean enabled

String description

imposeConstraint(Store jacopStore)

AllSectionsFilled

Fily

PreventSectionConflicts

RequireAssignmentConstraint

ForbidAssignmentConstraint

RequireSkills

ForbidinstructorConstraint

PreventScheduleConflicts

LimitStudentTotalConstraint

Page | 25

SEQUENCE DIAGRAMS

LOGIN
Lser Login Semester
nterface Handler Handler lodel Data Store
: : : : :
1 | | | |
checkLogin ! : : :
| checkLogin | |
]]
| wvalidLogin | >[|
validLogin | | |
"""""""" I I I
L | I I I
1 | | |
1 I I I
| | |
change3emester I I I
f -—— I I
Inadsqmester !

loadModel

Page | 26

SAVE SESSION

Wiew IModel

Get Model

Return Model >[I
'5:{ ________________

1
1
:
AftachModéIListener
1
1
1
1
1
1
1

I
Modifyodel
: ModifyModel

L NntifyrﬂndeqListeners
___________________ e

SaveModel

Session
Handler

i
I
I
I
:
t

GetModel

Ij4 Retumn model

1
I
M
1
I
I
I
I
I
I
I
I
I
I
I

—————— >

Data Store

SaveMaodel

Page | 27

PICK SCHEDULE

Contraller Scheduler Model

Get Schedule

Get Schedule Data

Return Schedule Data

Return Schedule | |- T

A - :
AddiSchedule I

T

Page | 28

USE WEBFORM

Website

Register Account

Data Store

registerdccount

Submit Login

checkLaogin

Feturn Successful Login

GetUnauaiﬁableTimes

validLogin

Return Unau'ailable Times

Submit UnavailableTimes

e Pmmmmmmmmemmomnes

i

1 |
GetPublishedAs signments >
]
L ReturnF'uinsh{edAssignments
"""""""""""" [B
RespondToAssignment I
; —
|
|
I L
-) |
GetF|naI|zediA55|gnments -
ReturnFinalizgdAssignments
| ReumFinaizdorssignments | |

Page | 29

DEPLOYMENT ARCHITECTURE

DEPLOYMENT DIAGRAM

<<device>>
WWW Server

<=executionEnvironment>>
Apache Server with PHP

WebForm
Server

<<executionEnvironment>>
MySQL Server

sQL—O

SQL Database

<<device>>
:User Computer

<<executionEnvironment>>

JRE

O-saL

Assistant Scheduling System

= |

<<device>>

:Assistant Computer

<<executionEnvironment>>

Web Browser

!

O—HTTP—

WebForm Client

= |

Page | 30

DEPLOYMENT LOGISTICS

What gets installed where:

1. Server
a. Install Apache
b. Enable PHP in Apache
c. Install MySQL Server
d. Setup SSL Certificate on Apache if a signed one is being used.
e. Open port 80,443 and 3306 in the firewalls protecting the server.
f. Place everything from php folder in the root of the Apache webserver.
g. Run sql command line application and run the following command:

i.“@<Directory where kiwi.sql is located>/kiwi.sql”
2. Assistant Computer

a. Ifoneis not already installed, install one of the listed modern browsers.

b. Go to the web address of the Apache server.
3. User Computer

a. Install the Java Runtime Environment

b. Run Kiwi Assistant Assignment JAR

Required supporting software:

1. Server

a. Apache Web Server

b. Apache PHP Support

c. PHP LDAP Extension

d. PHP MySQL Extension

e. MySQL Server
2. Assistant Computer

a. Modern Web Browser (Firefox 3.6+, Chrome, IE 8+, Safari, Opera 10+)

i.0thers may work but they are not supported

3. User Computer

a. Java Runtime Environment

Page | 31

TEST MODEL

To test our Assistant Scheduling System we will first create JUnit test files for all classes in
our project. We will write thorough JUnit tests for all methods in the java classes from trivial
“getters” and “setters” to long methods which perform many tasks. For user interface tests, we will
also run thorough our use cases to make sure that interacting with the program’s user interface acts
the way we intended the system to work. All of our JUnit tests can be found in the kiwi.unitTests
package. In the unitTests package there is a test suite which will run all JUnit tests however each
JUnit test can be run by themselves. This allows us to quickly test changes and do a full regression
test depending on what we decide to run.

For the webform we plan to do user completed tests, checking values in the mysql database
and visual elements in the webform itself.

Page | 32

PROBLEMS AND LESSONS LEARNED

Over the course of the design and implementation of this project, a number of challenges
were met. Some of these problems were technical in nature, such as the ones involving constraint
satisfaction and third party libraries. Some of the problems were more human-oriented, typical of a
project of this scope. All the difficulties encountered were overcome with collaboration from the

group.

Perhaps the most central issue encountered in creating this system was performing the
constraint satisfaction. A considerable amount of research had to be done to explore the different
ways that the root problem (known in the literature as the “Nurse Scheduling Problem”) could be
solved. We explored a stochiastic search approach, but instead opted for a more traditional
Constraint Satisfaction system. Eventually, in the interest of time and simplicity, the group decided
to use a third-party system named JaCoP, chosen for it's documentation, acceptable benchmarks,
and comparitively well-maintained code base.

JaCoP was not the only source of contention. As part of the developing requirements of the
system, it was decided that the system should involve a Data Store. Initially, this system was to be
done in MySQL. Discussions with the professor and teaching assistant led the group to decide that
MySQL would be too heavy for our purposes, and we switched to a folder-based structure with data
files. Eventually, however, problems with concurrent file access and connection protocols led us
back to MySQL.

The final major technical problem that occurred in the system was working with Java Swing
libraries. The group found the library to have a complex data model and complicated layout engine.
Ironing out errors in component placing took up an unfortunate amount of time and distracted the
group from work on internal systems. The only solution was to spend more time learning and
testing the systems in order to get the kinks out.

As previously mentioned, not all the problems were strictly technical. For a large portion of
the semester, there was limited communication with our client. This lack of dialogue eventually
resulted in a grave misunderstanding of the requirements of the system, causing us to waste a large
amount of time and energy in creating an over-generalized constraint specification system.
Ultimately, contact was reestablished and the mistake corrected.

The final difficulty we had was handling the task management. Group members had a
number of issues adjusting to TRAC, and in the end, it was decided to post work assignments via
Google Docs and use it to collaborate on documents. This allowed us to forgo many group meetings
and complicated email chains. Google Docs also had the added advantage of keeping a revision
history and cloud storage, ensuring recovery of lost work and ease of access

Page | 33

PRIMARY AUTHORS

Austin Cory Bart:
e Supplementary Requirements
e Problems and Lessons
e Domain Model

Andrea Macartney:
e Formalized Use Cases
e Use Case Models

e Glossary
e Vision
Michael Chinn:

e Deployment Architecture
o Test Model

Etornam Banini:
e Sequence Diagrams
e (lass Diagrams
e System Architecture

Will:

Page | 34

